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Translator’s Note

In translating this paper small inaccuracies and printing errors in
the German original, as published by Waldo,_rfschul-Spielzeug u'nd
Verlag, Stuttgart, 1928, have been corrected. Other items requiring
comment or clarification, identified by numbers in the text, follow

"the text as Translator’s Notes. All footnotes in the text are the
. author’s.

This translation has profited greatly from discussions with

: ]é’:}m Hoffman and David Booth, teachers at the Green Meadow

ildorf School in Spring Valley, New York, and from the sensitiv-
guage of Ruth Pusch in editing the final text.

Herbert Winter
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Publisher’s Preface

It has been for me a very happy undertaking to republish Her-
mann von Baravalle’s inaugural dissertation on behalf of the
Mathematical-Astronomical Section at the Goetheanum. Those of
us who have a genuine feeling for the forces of growth and devel-
opment, acquired through patient study of Rudolf Steiner’s spiri-
tual scientific ideas indicated in Knowledge of Higher Worlds and its
Attainment, will be delighted to meet this book again after seven
years—and be stirred by it. The ideas of this highly gifted teacher
and artist that we know from his later work, especially his
Geometrie in Bildern and Durchblick durch die Erde, are already pres-
ent in this one, as a future plant is contained in its seed. His books
have brought new life and creativity to the otherwise dry mathe-
matics instruction; this first pedagogical work of his is filled with
the vibrant experience of his own teaching practice. Every page
bespeaks the love for his young students and their problems, alove
which, fructified by Rudolf Steiner’s educational ideas, brought
the seed to flowering. The suggestions given in thé most diverse
domains of physics, mathematics, and astronomy present still

today a beautiful introduction to the methods of teaching these
subjects. '

Elisabeth Vreede PhD
For the Mathematical-Astronomical Section

of the School of Spiritual Science,
’ Dornach 1928
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Author’s Preface
(for the first publication of the work in the series
: Wissenschaft und Zukunft 1921)

Revising the school system today is not merely a problem for the
experts but has become a problem of general interest. On all sides
there are attempts to remove irrelevant material from the curricu-
lum. The following work is meant to be a contribution to this
endeavor. Since I decided from my earliest youth to dedicate my
life to teaching, I tried during my own schooling to make observa-
tions on myself and my friends that could be useful for my future
profession. Later, too, I constantly considered these problems and
tried to find out where in the course of instruction students have
the greatest difficulties. The actual examples that I met in the
course of time have helped me in my attempt to meet those diffi-
culties. What started as instinctive striving became a goal-oriented
task when I became acquainted with the pedagogical ideas of Dr.
Rudolf Steiner, now being used and developed with great success
in the Free Waldorf School in Stuttgart for students of elementary
and high school age, and in the Goetheanum in Dornach near Basel
in Switzerland for those of college age.

Hermann von Baravalle
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On Teaching Physics

During the first years of physics instruction, and even later, we
find again and again that students have the greatest difficulties
understanding the concepts of physics. The teacher, of course, has
spent considerable time working in the field. Things that seem
obvious to him, for instance, the definition of speed under uniform
motion as the distance covered in unit time, are often extremely
difficult for students to understand, therefore often simply memo-
rized by them. If we look for the cause, we have to admit: the
students knew what speed was before starting the study of phys-
ics, but they knew it as experienced when riding in a car or a train.
Surely every child has had the happy experience of enjoying high
speed. Now, it is only necessary to trace the history of physics to
realize how many thousands of years it took to get from the mere
experience of speed to its measurement in terms of distance and
time. The necessary progression to exact numerical measurements
may perhaps be presented as follows: The experience of speed as
such is not measurable, therefore does not admit attachment of a
numerical measure. If one wants to introduce such a measure one

- must turn to measurable quantities which are connected with

bodies in motion, and which will permit a unique determination
of speed. Now, the measurable quantities connected with motion
are the distance covered and the time elapsed. One of these quan-
tities alone is not sufficient for a unique determination of speed;
both together are sufficient. But, in order not to need two measures
to determine speed, onk for distance and one for time, one lets only
one of these quantities'vary, and séts the other equal to a constant,
namely unity. Now, Idgically no objection could be raised if one
were to define speed in such a way that the distance is set equal to
unity, so that speed w:rould be defined as the time necessary to
cover a unit distance. But this would cause motion experienced as’
faster to be represented by a smaller numerical measure of speed;
it is therefore more reasonable to set the txme equal to unity, and to .
define speed as the distance covered in unit time. The teacher, in
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introducing a definition, must be aware of the whole path neces-
sary to arrive at that definition; only then can he understand the
difficulties students will have when this path is simply skipped,
and why he must try to present everything necessary to let the
student take part in this development. Here, attention to the his-
tory of physics is one of the best methods, just as it is always of
great educational value to point to the great achievements of a
Galileo, Kepler, etc., and to the difficulties they had to overcome.,

We often find in teaching that we add new ideas to those
introduced earlier without first carefully developing the reason
why the earlier ideas are no longer sufficient. We find this, for
instance, when we proceed from linear to rotational motion, and

Fig. 1 substitute the ideas of angular veloc-

~ ity, angular acceleration, torque, etc.,

for velocity, acceleration, force, etc, If

we simply bring new definitions, the

students may have a slight feeling of

arbitrariness in the introduction of

these ideas, just as everything that is

not understood must appear arbi-

trary. Here it is therefote necessary to

show first how on a rotating disk all

points do not have the same velocity, that one point (M in Fig. 1)
remains completely at rest, while the others move with greater
velocity the farther they are from M, so that the simple idea of

velocity is no longer sufficient. One might now say that in order to

have a unique measure for the angular velocity of a disk one could
choose certain points (those with r = 1) and use their velocity to
represent the velocity of the disk. In this way one gets directly to
the id<a of angular velocity, and from there to its measurement in
terms of revolutions per unit time (e.g., rpm).

An objection to this method is that the ideas developed for
linear motion are simply modified to be used for angular motion.

It is better not to teach the student to solve everything with ideas

2
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developed earlier, because such laziness in thinking has already
created much mischief in science (the theory of light emission,
etc.). Instead, the student should be led from the beginning to
comprehend the characteristics of each new phenomenon throu gh
new ideas. In linear motion it turned out that speed could be
measured by the number of distance units traversed in a unit of
time, where the units were arbitrary. It turns out that in rotational
motion there is a natural unit, namely a complete rotation; the
return to the original position, so that the number of complete
rotations in a unit of time appears as the natural measure of
angular velocity. This is also the measure used most often in
practice (rpm of an electric motor, a steam engine, a propeller, etc.).

Only now can we arrive at the angular velocity and say: If in
certain problems (e.g., problems of centrifugal force) what matters
is not the rotating disk as a whole, but the velocity reached by
certain points on the disk, one must find simple ways to compute
these from the rotational velocity (rpm). Here, one only. needs to
come back to the measures defined for linear motion, distance and
time. For a point at a distance r from the center of rotation, the
distance covered in one rotation is 2x7 In one unit of time there are
n rotations, so the distance covered in a unit of time is 2nrn. The
velocity increases in proportion to the magnitude . If one has to
compute the velocities for several points one need only multiply
the quantity 2zn, representing the velocity for the points with r =
1, by . This velocity can therefore always be chosen as the basic
velocity (angular velocity). It is now self-evident that one can also
find the angular velocity  from the velocity v of any point at a
distance 7 from the center of rotation by dividing v by 7 : o = g/,
Only when physical concepts are introduced clearly and exactly
can the students be led to a real understanding,

For this it is necessary to differentiate strictly between those
formulas of physics that represent an introduction of new con-
cepts, and those which contain a law of nature connecting such
concepts. So, for insiance, the formula P = mvz/r (P = centrifugal
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force, m = mass, v = velocity of a point at distance r from the center
of rotation) represents a law of nature; by no means, however, does
F = ma. Yet, how often does one find this formula presented in
instruction as if it were a law of nature! This formula introduces
the measure for force, which we might perhaps present to students
in the followmg way, assuming that the concepts of velocity, accel-
eration, merba, etc. are already familiar. We explain that what
students have known as force is again not accessible to measure-
ment. A foxce becomes measurable only when it has set a body in
motion, so that one can measure an accelerahon of that body. If the
force would provide the same acceleration to all bodies, the accel-
eration would immediately provide a measure for force. This,
however, is not the case. If we nevertheless want to retain the
acceleration as a measure we have to agree on a body to be put in
motion, so that we may define as a measure of force the accelera-
tion given to that particular body. But sometimes this body may
not be available; one would therefore like to be able to compute the

acceleration of the unit body from the acceleration of any available

body. Now it turns out that a body which, on application of a small
force, moves just half as fast as the unit body, will also, on applying
a large force, have half the acceleration of the unit body, so that the
conversion is achieved simply by multiplying by 2. In fact, for
every body a number can be found which indicates how much
greater the acceleration of the unit body would be on application
of the same force. This number is called the mass = m of the body,
and so the measure of force can be taken as F = ma..

Likewise, Gay-Lussac’s Law must not be presented as a law of
nature. It is an immediate consequence of the introduction of the
concept of temperature. If we decide to measure temperature by
the expansion of a body, and if we divide the expansion between
freezing point and boiling point of water into equal parts and
extrapolate, then necessarily It = I, ( 1+ at). On the other hand,
Mariott's Law, PV=k, recognizes a new concept.

Poorly understood symbols can be just as detrimental as
poorly understood definitions or formulas. How many students
know where the symbols for degree (°), minute (‘) and second ()
come from? From astronomical considerations, one took the 360th
part of the full circle as a unit, and then constructed divisions. The
first division divided the degree into 60 parts, and the result of this
first reduction was called “minute” (minutus = reduced). The sec-
ond division led to the “second” (secundus = the second). Accord-
ingly the minute as first reduction is denoted by ’, the second as a
second reduction by ”, and so the degree as zeroth reduction by °.

The rule to keep any poorly understood material out of the
lesson requires unlimited honesty in the field of experiments.
There is nothing more harmful than to pretend, after an unsuccess-
ful or partly successful experiment, that all is in order and that the
result has clearly established the theory. It is obvious that we must
make every effort to perform experiments successfully, and that it
is better not to perform an experiment at all rather than to have it
miscarry. Nevertheless, it can happen that an experiment does not
come out as expected. In such an event, we must honestly admit to
failure, determine its possible cause, and repeat the experiment
next time.

Instead of demonstrating effects by means of small-scale ex-
periments it is often much better to show their monumental results
in nature. For instance, the effect of temperature on volume can be
shown most clearly By taking the students to a quarry where the
rock layers are nearly vertical or show folds. We then show by
fossilized sea shells, etc., that these layers had once been laid down
horizontally by water; later they moved in such a grandiose man-
ner because of the eaxth's shrinkage due to the decrease in temper-
ature! At the samé quarry we can explain that the effects of
expansion and contraction through changes in temperature are the
primary cause of the weathering of the rocks. Even though
these expansions in solid bodies are small and all kinds of instru-
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mentation are necessary to make them visible, they occur with

such tremendous force that they can even shatter the rocks.

Through such procedures we can make the students realize
that experjments, such as these concerning expansion, are not
special marvels happening only in the classroom, but that they
serve more than anything to bring before oureyes things that occur
everywhere in the outside world. We can reach this goal very
successfully by letting the students themselves discover where
phenomena observed in the classroom arg found outside. If, for
instance, after discussing the convex mirror we let the students
look for convex mirrors elsewhere, we are frequently surprised by
everything they come up with: china and kitchenware of all kinds,

‘bottles, eyeglasses, spoons, patent leather shoes, ink spots, etc.,

right up to the human eye in which one can also see one’s own
Imirror image.

Connection with everyday life can almost always be demon-
strated, even with quite abstract mechanical concepts. Consider,
for instance, the difference between stable and unstable equilib-
rium. The basic difference is that in unstable equilibrium a small
displacement from the position of rest will result in an increased
displacement, while in stable equilibrium the tendency is to return
to the rest position. For this we can look for phenomena in various

areas which, once they get started, tend to enlarge, for example, :

damage to a house, or we can look at the phenomena of daily
traffic; this children themselves can observe. If streetcars travel at
constant intervals, but one car is delayed for some reason, because
perhaps a school lets out and many children get on, the distance to
the preceding car increases, and the distance to the following car
decreases. Therefore, at every stop more people will collect for this
car, and it will get farther and farther behind schedule; on the other
hand, the next car will find fewer people and will advance and get
closer and closer to the delayed car; the even distribution of street-
cars is therefore also in some kind of unstable equilibrium.? -

6

Another example from outdoors would be the formation of
meanders in a stream. A stream flowing in a valley in a straight bed
will always carry along small rocks and will thus deepen its bed.
If during this process of digging it meets up with a large rock
which is toward one side of its bed, the flow will be directed
toward the other side. The water runs obliquely with respect to the
direction of the bed and bounds against the bank at A (Fig. 3). From
there, it runs back into the old bed and hits the-other bank at B. At
A and B, therefore, the banks get washed away more and more,
and the meander forms. The straight flow of the stream is therefore
also in unstable equilibrium. This phenomenon becomes even
more interesting when one considers that the meander eventually
becomes so extreme that the stream breaks through and is led to
the path of Fig. 6, causing new meanders (Figs. 6 & 7). The appear-
ance of the meander, caused by every small influence, its disap-
pearance and reappearance somewhere else, is the only
explanation for the widening of the valley.3

Fig2 Fig. 3

Fig. 4 Fig. 5

e @%
L

The more examples one brings from all kinds of areas to show
the students how much they can learn from things they pass
apafhetically every (jiay, the more likely it is that one may achieve
a most important goal of scientific instruction: to stimulate the

Fig. 6 Fig. 7
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students to go through life with their eyes open. Goethe is a
shining exarriple of this. Reading his Italian ]oz;rney, we are amazed
at how much he notices, what he observes everywhere he goes,
whether it is minerals or plants or works of art. We perceive the
same spirit in his Theory of Color. Goethe’s method of research is not
such that after he puts away his prisms he happily puts away his
thoughts on ';ihysics too: he is a researcher wherever he is. While
travelling in his carriage he observes interference phenomena on
the window panes. Every cloud formation prompts him to look at
the colors, etc. etc. Instead of making fun of possible inexactness in
his work we should find it much more important to absorb his
scientific impulses.

How much more interested the students become when we try
to connect the school work with real life! It is hardly enough to
study the steam engine and then to say that steam locomotives are
moved by the same principle. When you do that everything re-
mains abstract. The effect on the students is entirely different if one
describes exactly where the fire box in the locomotive is placed,
how the steam pipes run inside the boiler, how the steam is col-
lected in the dome, where the water pipe runs to the steam cham-
ber, where the cylinder is located, which wheels are driven and
which only follow along, and so forth.

What joy the students have.then when one draws the interior
of the locomotive cab (Fig. 8) and shows what levers there are and
which of them one must work to set a locomotive into motion: how
one must first set the reverse lever (which sets the gears for moving
forward or backwards); how then with the regulator one allows
the steam to flow to the engine, setting the locomotive in motion;
how in order to stop, after shutting off the flow of steam with the
regulator, one has two brakes at one’s disposal: the air brake
(operated by the engineer) and the hand brake (operated by the
fireman). Once the students have heard all this they will look at a
locomotive quite differently, recognize the various parts again and
notice the differences in the various types.!

8

3
|4 “ ) 1
~ 1-reverselever. 2-regulator. 3- airbrake. 4 -hand brake.
5 - water gauge. 6 - test cocks. 7- pressure gauges. 8 - fire box.

In a similar manner one can discuss the technology of a street-
car. One can point out that the driver operates the electric current
switch and the electric brake with his left hand, the hand brake
with his right hand. One can discuss the different uses of the two
brakes. The electric brake works by shorting out the electric motor.

It is thus activated by the motion of the car itself and serves

therefore to brake the speed of the moving car. On the other hand,
if it is necessary to keep a car from moving while waiting at a
streetcar stop on a slope, one has to use the hand brake which
works through mechanical leverage. The electric brake would first
allow the car to move and only then become activated by the
motion of the car; it is therefore not useful for keeping the car from
moving on a slope. After such a discussion students will certainly
follow the action of the driver with much greater attention and will
attempt to supplemént what they have learned in school with their

own experience. ) /: 0}:‘ ,L\Ii{y
G %
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"The controls of an automobile might be mentioned briefly. The
teacher can show the gear shift lever on the right, corresponding

.to .the rever_lse lever of the locomotive. It édditionally permits
-adjustment for different speeds, and is operated by hand. The

difference be;tween the automobile and the jocomotive is that in
the locomotive the motion of the wheels is directly connected to
the engine, while in the automobile the engine can be started

_ without the wheels moving. The connection between engine and

wheels is regulated by the clutch, which is gperated with the left
foot. The right foot operates the brake, so that once the engine is
started the car is set in motion and stopped using only the feet,
which leaves the hands of the driver free for the steering wheel.”
When we see how great an interest the students have in all this we

will not look upon it as an unnecessary extension of the already

large amount of subject matter in the curriculum, but as an answer

to questions that are alive in the students and must be used to
awaken their interest in the real world.

The main requirement for teachers is to be intensely interested
in all this, and continuously to try to increase their own knowledge
in every field. This can best be achieved by approaching people in
their own practical fields and asking what they think children
should learn in school about the tools used in their jobs, and in
what way school did not prepare students sufficiently. One result
of this might be greater public interest in school problems and a
willingness to cooperate in solving them; another good result will
be that teachers are able to collect more and more examples from
practical life for their teaching. ‘

Just as our method of observation is stimulated by Goethe in a
general sense, Goethe's points of view in particular cases are ex-
traordinarily fruitful for teaching. Goethe always attempts to com-
prehend phenomena through extreme cases. This point of view
may be used, for instance, to clarify wave propagation to students,
since they often have much difficulty with the concept, especially
as expressed by the equation:

10

c=4 < (¢ = propagation velocity of a wave, € = modulus of
p

elasticity, p = density). If a point through some means is set into
periodic motion on the path A-B about its point of rest R (Fig. 9),
there are two extreme cases with respect to its neighboring points:

A
PPPPP L
B8

Fig.9
1. The point has no contact with its neighboring points Py, Py,
P3,... Then these remain at rest independent of the motion of point
P. Its motion does not propagate.

2. The point P is rigidly connected to the neighboring points
Py, Py, P3,..., so that they must follow its full motion. The situation
then looks as shown in Figs. 10 and 11.

PP, PP, P Y
©oco0co0o0aocoog X
4 P P P P, P
: 0000 00d0 o0 d
\y
Fig. 10 Fig. 11

The points Py, Py, P3,... are raised at the same time as P by the
same distance h from their point of rest, later they are lowered at
the same time as P below the pointof rest, like a rigid rod displaced
parallel to itself. If now the connection is not completely rigid,
allowing a certain elastic displacement between the several points,
but if this displacemfent is not unrestricted, as in case 1., there will
be a delay in the motion of the several points, so that after the start
of the motion of P the picture of Fig, 12 d'e,velops,6 and after several
oscillations that of Fig. 13 appears.

11



Fig. 12 Fig. 13

The delay of the several points is greater, the greater the veloc-
ity at the corresponding displacement; but this velocity can be
derived from the projection of circular motion, where the distances
graphxcally, can be taken as measures of these velocities. It follows
that the sequential displacements are in proportion to the sine of a
constantly increasing angle. :

: Fig. 14 ;

The entire picture of the displacements results in a sine curve.
The greater the expansion that the elastic bond permits betwee.n
the several points the more will P; lag P, the smaller therefore will
be the propagation velocity of the wave. This demonstrates the
dependence of ¢ on the modulus of elasticity, which is the essential

part of the formula ¢ = / £ | The modulus of elasticity is, after
P

all, inversely proportional to the elastic displacement, since it is

defined by 7L=-1-€L (A = elastic displacement, F = force, I =
£

length, a = cross section area).

Finally, in regard to the mathematical laws contained in phys-
ics, it is not enough simply to derive a certain formula and then

12

present it as the end result, but we have to awaken in the students
a feeling for what is expressed in certain mathematical relation-
ships. For instance, the formula PV = k expresses a kind of equilib-
rium between the quantities P (pressure) and V (volume). We
might present the following table:

fork=64 P Y
8 8
16 4
4 16
32 2
2 32
64 1
1 64

Here we can show how in doubling the pressure the volume
becomes half; in quadrupling the pressure the volume at the same
time decreases to one-quarter, how, on the other hand, by halving
the pressure the volume doubles, etc. We can compare the relation
expressed by PV = k: thh a scale in which the falling of one pan
causes the other to rise, and vice versa. The formula leads us to
understand pressure and volume as two different but balanced
expressions of the tendency of gases to expand (according to the
kinetic theory of gases, the kinetic energy of the molecular motion
in the gas) which, when not restrained, appears as an increase in
volume but, when réstrained, as an increase in pressure. The stu-
dents must obtain an inner relation to every formula. More exam-
ples of this will be found in the section 6n mathematics.

In mathematical principles it is important to work out what is
essential in the clearést way. Taking, for example, the principle of
virtual dlsplacemenf one can hardly imagine a more beautiful
presentation than the one Ernst Mach gave in his Mechanics. He
considers a box from which two arms stick out (Fig.15). If one is
moved, the other one moves at the same fime. Now, it is not at all

13



necessary to know the mechanism enclosed in the box connecting

A and B; based on the principle of virtual displacement, one can set

up the equilibrium conditions from just the simultaneous motions:

Fids1 = - Fadsy, or ZIFidsi=0. This arrangement clearly shows
. ; :

what is important in the principle of virtual displacement, namely
the simultaneously produced displacements.

Fig. 15 —

Instead of developing mathematical concepts purely ab-
stractly and then applying them to physical problems, it is often
miuch better to tie their introduction to a physical situation. This is
justified historically; after all, many developments in mathematics
h_a{':e been stimulated by physics. Thus, instead of deriving the
trigonometric functions from the right-angled triangle they can be
obtained directly from the study of motion.

One can proceed in the following way. Consider the motion of
a body toward the right, in the direction of the x-axis. Due to
certain constraints motion only in the direction of g (Fig. 16) is
possible. This includes motion to the right, but only as a part of the
total motion. The relation between the two motions is a function of
the angle ¢, namely cos ¢ . The problem might be made realistic.
Suppose one wishes to reach a place which lies in the direction of
the x-axis, but instead of a direct path, there is only a path in
direction g. The question is then: How quickly does one progress
in the direction of the x-axis? One might call the cosine the function
of approach to a given direction. If, on the other hand, one is
concerned with the deviation from a direction, e.g. from the direc-

14

tion of the x-axis; if, in other words, the question is what part of the
motion is used to depart from the x-axis; one arrives at-a second
ratio, which again is a function of the angle ¢, namely sin g, which
one might call the function of deviation (Fig. 17).

Fig. 16 Fig. 17

L-cosp

The advantage of this kind of introduction of the trigonomet-
ric functions is shown especially in the derivation of further for-
mulas, and in their applications. With this introduction, it is fo‘r
instance quite obvious that cos ¢ = cos (- @), since, when one is

concerned with going in the

Fig. 18 x-direction, it makes. ro dif-

ference whether one'is on the

left side or on the right (Fig.

18). On the other hand, mo-

tion in the direction of the x-

i-¢ - axis reverses when one

\ replaces ¢ with (180° - ¢ );

hence, cos (180 ° - ¢ ) = - cos

@. The direction of deviation

from the x-axis, however, re-

verses when one exchanges

¢ with (- @ ). If before one deviated to the left, one now deviates
to the right, so that sin (- ¢) = -sin ¢ .

In physical applications one can show that the cosine appears
whenever the approach of two directions is involved, Wh.lle the
sine appears when their deviation is involved. If a body is con-
strained to move in the direction g7 (Fig. 19), but the force acts in

15



the direction g, the actual motion and the work done depend on
the approach of the directions; thus, W = Fd cos ®. If, however, the

rod I1 (Fig. 20) rotates about point M, and if g7 is the direction of an |

acting force, the rotation of /7 about M depends on the deviation of
the directions, because, if 81 were in the extension of I7, no rotation
could result. Here, therefore, the sine must be used.

‘Fig. 19 Fig. 20

\ 1
- N

To show, finally, to what extent physical points of view can
help in understanding even problems of higher mathematics, we
might point tc the development of periodic functions from the
Fourier series. How much better we will understand the import-
ance of the sine and cosine functions among all periodic functions
(according to Fourier’s Theorem, all periodic functions may be
represented by sums of sines and cosines) when we show how
every periodic function, propagated through a resistance, by itself
approaches a sine (cosine) function. For instance, the irregular
diurnal or annual temperature variations, when propagated below
the earth’s surface, tend to approach pure sine waves.

16
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On Teaching Astronomy

In teaching astronomy, the main thing is to base the entire devel-
opment on observations, and to return again and again to whatcan
be observed. One easily underestimates the great demands made
on the students by even the simplest astronomical concepts. Fre-
quently, one thinks that the students have well understood a num-
ber of facts based on the drawings on paper, but when they are
presented directly with the phenomena they can hardly find their
way.

Take, for example, the illumination of the moon. The students
usually learn the origin of the phases of the moon from a drawing
(Fig. 21). One tells them: If sun and moon are in opposition, that is,
if they rise and set twelve hours apart, it is full moon. The full
moon therefore rises in the evening and sets in the morning. If sun
and moon are in conjunction, if they rise and set at the same time,
it is new moon. If, however, they are 90° apart in such a way that
the moon rises at noon and sets at midﬁght, one only sees one-ha}f
illuminated - the moon is waxing. In the opposite case, the other
half is illuminated - the moon is waning. It rises at midnight and
sels at noon. Now, after discussing all this, just try to take the
students out one evening, show them the moon, and ask them:
Where is the sun now? The moon might, for instance, look like Fig.
22. '




Fig. 22

It is a tremendous jump from the drawing of Fig. 21 to this
question, and rarely will the students know what to make of it.
One can make it much easier for them if one uses the opposite path.
One i'luminates a sphere, say the globe, with the projector and
arranges it so that the students can see at one time more of the
illuminated half, at another time more of the half lying in shadow.
One shows them that the boundary between light and shadow,
which is always a circle, appears at one time as a circle, at another

time as a narrow ellipse. One guides them to derive from the

visible part of the illuminated half the position of the entire
illuminated half, and from it the direction of the light source, so
that they will find from Fig. 22 the direction of thé light source as
the direction of the arrow in Fig. 23. This arrow does not lie in the
plane of the drawing, but must be thought of as pointing away
from the viewer. Now one can turn to the observation of the moon
itself by saying that on the moon, too, one-half is always
illuminated, the other-is in shadow. As we saw with the
illuminated sphere, now too we can determine the position of the
illuminated half from its visible portion and from that the direction
of the source of light. At this point one can explain to the students
that the moon at night can never appear as it is often drawn in
children’s books, namely peeking into the window from above as
in Fig. 24, because this means that the sun would have to be in
the direction of the arrow in Fig, 25; the sun would be high above
the horizon, it would be bright daylight. The teacher will further
indicate that after sunset the moon would look something
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like Fig. 26. Fig. 27 indicates the direction of the sun, wherje again
the arrow must be thought of as pointing away from the viewer.
Fig. 26

P LI L

On the other hand, if we see the moon a short time before.r sunrise,
it looks like Fig. 28, where the direction of the sun is indicated by
Fig. 29.

Fig. 28

gL B ; S
Once the students have been led to visualize the position of the
sun from the appearance of the moon, we can complete the lesson
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by showing how to tell time by the moon by estimating how far
the sun has sunk below the horizon.

We can then take up the apparent circular motion of sun,
moon, and stars due to the rotation of the earth. [ have found many
students who could recite Kepler’s Laws very well, but were very
astonished when we discussed the fact that the constellations of
the fixed stars also rise in the east and set in the west, that in fact
they appear to traverse the sky just as quickly as the sun and moon.
in order to strengthen this point, it is even a good idea at first to
emphasize that sun, moon and stars traverse the sky at the same
rate. Only when this is understood should one describe how the
sun lags a little, so that in the course of a year it has lagged a full
circle. If one discusses this right at the start, the concepts will be
confused, and the degree of this lag will be felt to be much too
great. The concept of this motion of the stars can be made more
alive if one mentions that astronomical observatories are equipped
with a special clockwork mechanism so that the telescope auto-
matically follows the stars, and also that the picture of a photo-
graphic plate exposed to the stars for a night shows a lot of circles.
Fig. 30 represents a twelve-hour exposure toward the pole star.

Fig. 30
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Only when the students have heard all this will they easily
understand that the moon, if it is high in the sky in the evening,

S SR

must set about midnight, so that the views of the moon in Figs. 31
and 32 cannot appear in one and the same night but must be
Fig. 31 Fig. 32

assigned to two phases. Only now can one start discussing the
apparent motion of the moon and can show how its lag causes the
sequence: waxing moon (rises at noon), full moon (rises in the
evening), waning moon (rises at midnight), and new moon (rises
in the morning). The time of the synodic revolution does not have
to be given abstractly as 29 1/2 days; one could, for instance, take
a calendar, write down the dates of the full moons for the current
year, and let the students compute the differences in days; in this
way they themselves can find the period of the synodic revolution
of the moon as actually experienced. For the year 1921, the results
are as follows:

Full Moons Intervals
January 23 29
February 21 30
March 23 29
April 21 29
May 20 30
June 1? 30
July 19 29
At{xgusf 17 29
Septen:\ber 15 30
October 15 30
November 14 30
December 14
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- There are 5 intervals of 29 days and 6 intervals of 30 days,
resulting in a synodic period of 29 1/2 days. - '

Another important point is always to present the big picture,
Thus, in discussing the sun, the teacher should not only talk about
corona, solar flares, etc., but immediately add the importance of
the sun and its apparent motion for our earth. This is the occasion
to expound on the statement of physics: “All energy comes form
the sun.”” One shows, for instance, how the sun is necessary for all
motion on earth. The students themselves are asked to name
different moving objects, and then the teacher explains how coal
and oil are based on organic life, how animals and also human
beings need plants, and how plants are unimaginable without
sunlight. Here one can recall how potato shoots in dark cellars are
white, never green, and how quickly they die. In regard to electric
trains, the teacher has to show that the current in electric power
plants is obtained by water power, and how it is the sun again
which by its heat evaporates the water and raises it to the moun-
tains; after falling as rain, it runs as brooks and streams down into
the valleys and thus puts the generators into motion. The wind too
is created by unequal warming of the air by the sun. Then one can
mention that organic life would also be impossible undér constant
radiation by the sun, how the plants could not breathe, and how
the daily rotation of the earth prevents one side of the earth being
constantly in the light and the other side in the shade. This latter
possibility would be the case if the earth and the sun were in the
same relation as the moon and the earth (the moon always shows
the same face to the earth).

Finally, it is especially important in the field of astronomy to
tell the students not only what has been made known in the course
of time about the sun, Planets and fixed stars through scientific
investigation, or what is based on still uncertain hypotheses, but to
show how many unsolved problems remain, how many assump-
tions are still quite uncertain, to impart to the students the feeling

of wonder that is the source of all philosophy and scientific striv-
ing.
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One can proceed similarly' with the quadrilateral, etc. A further
step is the joining of plane figures to create solids. It is best to have
the students draw thepatterns of the several solids, including the
tabs for pasting, thed to have the students cut them out, score
them, and paste them together. Here, the teacher can guide the
students when making, say, a cube, to join squares with 3 cm sides
to each other without first saying what the resulﬁng solid will be.
In this way, the students will be steadily occupied with this prob-
lem while drawing. They will be considering how it is going to fit
together and will look forward to the final result of what they have
been imagining.

If in this way one has constructed the most important solids:
cubes, rectangular blocks, prisms, pyramids, cylinders and a cone,

it is extremely stimulating to make a little house in the same way,
e.g. in its simplest form:

Fig, 37

This is something that works on the students and which they
themselves will be stimulated to do at home in a variety of ways.
Such undertakings already harbor several rules, for instance, the
equality of planes 2 and 4. The students find the rules about
regular figures themselves if, for instance, among the many trian-
gles which they draw, the teacher develops one by drawing 60°
angles at both sides of the base and then asks the students to
measure the sides. It then becomes a happy experience for the
students that all three are the same, a perception which they will
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not soon forget.* Similarly, one checks the angle at the apex of the
triangle, so that it is also evident that all the angles are equal. One

can proceed in the same way with the square and the regular
hexagon.

It is important that the teacher does not present problems to
the students without first carefully developing at a more elemen-
tary stage the abilities necessary for their solution. One finds that
most students starting projective geometry have great difficulties
with the spatial visualization of anything connected with project-
ing and projections. These requirements of visualization are often
expected from the students for the first time at this point. A useful
tool as preparation at a more elementary stage is the study of
shadows,™ especially the study of cast shadows.

Fig. 38

= ,//

s

-

,.W
{

*  This may by no'means be presented as a proof bitt it prepares the questioning

which will then be answered by the proof.

** Thisis scheduled by Rudolf Steiner in the curriculum of the Waldorf School for
the sixth grade.

In this case we do not have to limit ourselves to one light source
but can perhaps develop the following configuration: A cylinder
illuminated from various sides casts shadows on its base plane
(Fig. 38). Such problems create fewer difficulties than one might
think. It is a particularly joyful experience to observe such a variety
of patterns. One can also proceed to the crossing of shadows (Fig.‘
39).

Fig. 39

On these occasions, a number of exercises can be presented
which will be of great importance in subsequent instruction, e.g.
the transition from circle to ellipse. Consider a semi-circle standing
vertically on the plane of the paper illuminated by a set of verti-
cally spaced light sources casting shadows on the plane of the
paper (Fig. 40). To create a total picture from the.sequence of
lessons, it is good to discuss the same figures at different stages
from different points of view. If earlier in treating different forms
of triangles one has arrived at a pattern like that in Fig. 36 b, one
can now arrive at a very similar pattern by assuming a trianglt? to
be illuminated by a set of vertically spaced light sources casting
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shadows of various lengths on the plane of the paper. In this way,
the transformation from one triangle to another discussed earlier
now becomes reality (Fig. 41).

Fig. 41

It must be a principle of teaching that one’s purpose should

not be to attempt to cover a particular material, but by using the
material to develop a particular ability in the students. In studying
the geometry of curves, if one considers primarily their variability, |

this could be the best method of awakening a ceftain flexibility of
thought. For this purpose, a number of examples of second-order
curves, as taught in the upper grades, will be presented. It will be
shown what transformations are possible when fixing various

. elements. Here, one will also have the opportunity to introduce

vividly some concepts of modern geometry.
1.Fix the end points of an axis (A and B) and move the foci (Fig. 42).

If the foci are near A and B but inside the line segment AB one
obtains very narrow ellipses. The closer the foci converge on the
center M, the closer the ellipse approaches a circle. It is completely
transformed into a circle when the foci meet at M. If one continues
this transformation, the foci diverge on the line g2, and the ellipses

_stretch vertically until the portion remaining on the paper ap-
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proaches the lines g3 and g4. If, on the other hand, the foci are very

Fig. 42
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close to A and B but outside the line segment AB, one obtains the
very narrow hyperbolas which deviate less from g the closer the
foci approach A and B. Moving the foci in the other direction, away
from A and B, will cause the hyperbolas to get wider until they too
approach the lines g3and g4. )
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The continuous transition from the narrow ellipses, whose
limiting case is the line segment AB, to the circle, further to the long
vertical ellipses, to the parallel lines g3 and g4, to the wide hyper-
bolas and from them to the narrow ones, finally reaching the
limiting line g1 outside AB , represents in summary a transition
from the inner line to the outer one.

The second consideration in this continuous transition is the
motion of the foci. First they move from A and B inward to M, then -

on the orthogonal line further and further out. Then comes a jump
to line g7 and a gradual approach to A and B until at A and B they
return to the starting point.

One can hardly imagine a better exercise than this metamor-

phosis to develop flexibility of thought. Of course, it must be

presented in a variety of ways.

2. Fix the foci (F1, F2); allow the axis to vary (Fig. 43).

If the end points of one axis lie within the line segment FiFy, -
one obtains hyperbolas which approach the line g2 as A and B .

approach M, but get narrower and approach the portion of line g1
outside segment F1F2 as A and B approach F1 and F2. If, on the
other hand, A and B lie outside F1 and F2, one gets ellipses which
approach a circle as A and B move outwards. In the contrary case,
however, if A and B coincide with F; and F2 the ellipses are

transformegi into the line segment F1F2. Here, one can show that,

as A and B move out from M, the figures are transformed from the

line g2 via the hyperbolas to the outer part of g1, then suddenly to

the inner part of g1, and finally via the ellipses to the circle®
3. Fix the four points (4, B, C, D); allow the foci to vary (Fig. 44).

Here, too, one can show how a continuous transformation
from one curve to another is possible. If one starts, say, with the
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circle, one can move the foci outward along line g1 and arrive at
longer and Jonger ellipses which approach the two parallel lines g5
and gs. The points of intersection of the ellipses and g2 approach
points N and P from the outside. If one now crosses points N and
P to reach the interior line segment NP one obtains hyperbolas
which finally reach their limit in lines g7 and gs. But one can reach
these lines also in another way. Starting again from the circle, if one
moves the foci outward along line g2, one gets by way of longer
and longer ellipses to g3 and g4. The points of intersection with g1
now approach Q and R from the outside. Crossing Q and R, one
again gets hyperbolas which finally run into the diagonals g7 and
88
Fig. 43

Y2
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4. Fix four tangents (g3, g4, g5, g¢) (Fig. 45).

Starting with the circle and keeping g3, g4, g5, 86 as tangents,
there are two ways of obtaining ellipses. One possibility is through
constantly narrower ellipses to line segment AD. The intersection
of these ellipses with gg approaches the points A and D and finally
~ coincides with them. If one continues beyond A and D one trans-
~ forms to hyperbolas which become wider the further one contin-
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. ues in this manner.- The second possibility is analogous, merely
. substituting g7 for gg and CB for AD

Fig. 45
/
9, /
\ 4
\, /
\\\\ 93 g"’
\\
9;
~. \\\ ~
S .
~_ \\ . / ,
I 8 9s
5
K/m —- 9,

N
N\
S

y

33




5. Fix'one focus, F1, and one axis end point, A (Fig. 46).

Fig. 46

\,

This transformation shows the transition via the parabola. As |

long as the foci or the axis end poirits move equally outward, one

retains twofold symmetry. One obtains ellipses and hyperbolas. If, ' transitions from one curve to the other by the intersection of a-
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however, one fixes one focus and its axis end point, and moves the
other focus and its axis end point further and further to the right,
one obtains ellipses which approach a parabola. If one continues
the curvature at A in the same sense, the fotus, which moved
further and further to the right, reappears on the left, the parabola
is transformed to a hyperbola whose branches become flatter and
approach each other until they finally transform into line g2.This is
a good demonstration of a concept of modern geametry, the single

infinitely far point of a'straight line (g1).

That a parabola really appears in the transition from ellipse to
hyperbola is easily proved by noting the change of the basic circle
(center = F, radius = major axis) (Fig. 47).

Fig. 47

\ Fi F, 9

If F2 moves to infinity, I2 becomes parallel to g1. The basic circle
is transformed to a straight line, and the definition of the ellipse
transforms into that of the parabola. It is similar with the hyper-
bola (Fig. 48):

If F2 moves further and further to the left, I becomes more and
more parallel to g1 and the basic circle approaches the same
straight line from the left, indicating again the transition to the
parabol::\.10

To make the foregoing more vivid, one can also show the
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plane with a double cone, changing the position of the intersecting
plane in an appropriate manner.
Fig. 48

3 o i

Fig. 49 represents this for Case 1.Lines e1 and e; are the gener-
ators of a cone shown in section, E3, E3, E3 the projections of the

5

Fig. 49

intersecting planes. The movement of the intersecting planes must
proceed in such a mannier that the distance AB between the lines ¢;

- and e2 remains constant,

For Case 2, the movement of the intersecting plane must take
place as in Fig. 50, which is again to be taken as a cross section of a

. double cone with the generators e1 and 2. The transition of E 1 Ea
i E3, etc. must be performed in such a way as to keep the distance

F1F; constant, as indicated in the drawing using Dendelin’s Theo-
n
rem,. :

Fig, 50

The transition via the parabola can be obtained by a rotation
of the intersecting plane. The rotation shown in Fig. 51 indicates
this most clearly, but does not correspond exaciiy io Case 5, since
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the distance F1A is not constant in this case. For that, a motion ¢
the point of rotation would be necessary.
Fig. 51

In conclusion, it should be pointed out how much can be
gained in the teaching of geometry if one tries to find examples and
stimulation in many areas. For instance, symmetry can be demon-§
strated very beautifully in plants, e.g. the violet, where not only i¢
the flower symmetrical, but the spur extends in the plane of sym

metry, and the entire stem carrying the flower bends only in the
plane of symmetry.

Finally, instruction in drawing is a good preparation for un-
derstanding geometry. Just as one can develop the feeling for,
symmetry by drawing symmetrical forms, so one can go beyond
ordinary reflection to reflection in a circle and perhaps present an
exercise like this; Given a circle, let the students draw formsin such§
a way that to every form inside the circle there is a corresponding:
form outside, so that a form which must it itself into the interior of|
the circle can expand outside of it. Here, one does not have todo ag
pedantic construction, but one can let a healthy feeling for form|
carry out this metamorphosis. It is obvious how valuable this can
be. The understanding for the relation of points inside and outside
the circle, a fundamental concept in function theory, will be awak-|
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ened in this vivid way, and an important problem will arise: where

. does the point corresponding to the center lie? The answer is: far

distant.in any direction. Fig. 52 presents an example of such an
arrangement.* ’

Fig. 52

* further material in this direction may be found in the author’s Geometrie in

Bildern in the folder ““Bilder aus verschiedenen Gebieten der Geometrie”",
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~ On Teaching Mathematics

Besides the principles already mentioned, it is especially, import- |
ant with mathematics to shape everything we present in such a -
way that it is thoroughly understood by the students. A mathemat-
ical proof should not merely be a logical chain that forces the

students to accept the result as proven, but when they try to carry
out the proof themselves they will have to depend at least at some

points on their memory. Instead, a proof must be developed in |

such a way that the student can always rediscover it. This is not
only true at the high school level, but also in college. Examples will
follow to show what is meant.

First we have chosen the invariance of the cross ratio in projec-
tive transformations. The usual proof goes as follows:

To prove the invariance of the cross ratio (ABCD) = % : g=g , One
Tepresents the areas of the triangles ACS, ADS, BCS, BDS in two
ways (Fig. 53):

Fig. 53

40

1. As half the product of base and height:
| AACS-AC -

i AADS=AD-

(TR

I ABCS=BC:

. ABDS=BD-
[
¢

2. As half the product of two sides and the sine of the included
angle:

ol NI

|
AACS=Vz'a-£-sin(ac)
| BADS=12-a-dsin (ad)
. ABCS=1-b-c"sin (bo)
| ABDS=14-b-d - sin (bd)

' If one now takes the cross ratio of the areas in both expressions and
E sets these equal, one obtains:

AACS ABCS AC:my BC-W» AC BC

?1' AADS " ABDS AD % 'BD k2 AD BD’
.. AACS ABCS _ Voa - c-sin(ac)  14b - ¢ sin(bc)
/2 AADS ' ABDS " Voa-d - sin(ad)  Vob- d - sin(bd)
| _ sin(ac) | sin(bc)

sin(ad) * sin(bd)

AC BC sin(ac) = sin( be)

i Equating, ﬁ——g : % = :

3

sin(ad) * sin(bd)

Now, on the left of the equation we have the cross ratio that is

- to be proved constant regardless of the position of line g. On the

- right side is an expression containing only sines of the angles

- between the four projection rays, therefore independent of the
position of g. This proves the theorem.
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Simple as this proof seems to be, one would hardly, witho% —_— — ' whi minators A”D and
appealiné to memory, think of using the areas of these triang}h ra_tios,. A a,?d 5 f; . e ox;jécvtvshﬂdlz g;:t::\::s of line g” from S to
and of representing them in two different ways in order to proy B'D, hea;nlgli;‘Butl t;:edinc);mmatom are increased by the same

. . N i e ’ : . :
the invariance of the cross ratio, ;}:’ ;)::ﬁo:, o thit each ratio changes, but the qx?ZsBr;g;g’)m:\}allel:

. . ' : D) = (A'B'CD’),

In contrast, a second proof will now be presented in whig ir’\vanant. This Przv:;tﬂ:::fﬁzeﬂz:y(ﬁéuiry slope. Since the
nothing shall be used which does not organically flow from t} 8§ goes through C b tio under any projection ontp a parallel
problem itself. First, one considers that Que to the similarity of if\vapax{)ce. of ‘thtizmzz:;l ;mof is complete.
triangles any transformation in which ¢ is parallel to & asin Fiy lineis obvious, the g
54, will shorten all lines equally, so that not only the cross ratio, b Fie. 55
all ratios are invariant. The proof of the invariance of the cross ratj &
depends therefore only on the rotation. We will therefore draw ; S
line ¢’ rotated with respect to g, '

Fig. 54

The question is, about what point we should rotate in order to %
obtain the simplest possible arrangement. In the cross ratio /7
AC BC

(ABCD) = AD'BD there is no special point of rotation since the.

first ratio % is concerned with the distances form A to Cand D,‘g_

the second ratio with those from B to C and D. Rather than choos- |
ing one point of rotation, it is morenatural to choose two, say Cand

If such proofs are often more wordy, one can nonetheless, if
D (Fig. 55). One can see immediately froni the similarity of trian-

. st
one has followed the thought process, senel tl:; e:\\::r grr;z:ft:zt];‘se
i i t e
gles ACA” and ADA” that the ratio AA=§ is equal to the ratio: looking at the figure, and it creates not only

—_ == cross ratio remains intact, but one sees also how the theorem came
C and similarly that the ratio B=—C mapbeam as BC . Butnow | into being.
Au D ’ BD . B"D

the magnitudes under consideration havé been apportioned to

g

i i the
Ometry let us consider the constant e. It 18 often mtroduced as
’
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n
following limiting value: lim (1 + _'1;) =e. While it is usually

M=o

demonstrated that this series converges, it leaves the student with
the question of why the limit of just this particular series plays
such a fundamental role in mathematics and physics. We have to
ask ourselves: could the limit of any other converging series not be
accepted as the base of the natural logarithm?

If we now look for the property of the number e which gives it
its importance in mathematics and physics we find that its appear-
ance almost always derives from the differential equation Z s =Y
where y is a quantity growing with time whose law of growth is
represented by this differential equation.. The latter says that the
speed of growth dy/dt is always equal to the value reached by y
itself, in other words, that Y grows faster the greater it becomes.
Now we can show how this type of growth results in the series we
just presented by letting the growth occur, not continuously, but in
discrete jumps. Thus, instead of dy=y-dt, one now takes
Ay =y At, where Ay and At are finite changes in y and .

1. At =1, starting point for ¢ = Oisy=1.

t=0,y=1
t=1y=1+1=2
t=2,y=2+2=4=2?
t=3,y=4+4=8=23
t=4,y=8+8=16=2"

Thus, y in this case grows as a power of 2,
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If we now make the jumps at half-second intervyals we obtain

2. At=1pfort=0 y=1
t=14 y=1+1/‘z:
t=1 y=(1+ 1+ =1+
t=3% y=(1+%+1na+n2=1+0
=2 y=A+W+1a+W =1+

=T y=(+'7=[a+"77

‘ 2.
; Now y grows to a power whose base is no longer 2, but (1+1/2)~ .

If finally we let the jumps happen after 1/1n second, we get:

3. At=VWnfort=0 y=1

) N |
t=;1' y"1+n

2 ca«DlaeogLe
t=; y_(1+n +n(1 n) ( n)

3 12,1y 41y
t=n y=Ae) o) t=a)

............. - cas D1 g 1y g, 1yn

t=;=l,y“(1+n) +n(1+n) ( n)

T
t=T y=(1+%)"T= [(1+%)"]

1.n
. . s (1+ Ly
Here, we already arrive at the power series whose base is ( n)

The greater we let n get, the more jumps we make in unit time, the
closer we get to the continuous case, so that the base of the power

: 1 )n
. - L)
series corresponding to continuous growth is lim (1 "

n-—oco
With this derivation we have not presentea an arbitrary series
to the students, but have shown them how growth conditions
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which frequently appear in the real world lead to this series. Eve_ﬁphere, where in every second the value of earth’s gravity, g, is

more frequent than the pure growth equation dy/dt = y is th qded, independent of the velocity reached. On the other hand, the
wih of capital in a bank through interest is gegmetric, since here
ady there. The more capital, the

equation dy/df = ay, resulting by an analogous developmentint
power y = ¢*. Here, the differential equation requires that
speed of growth is always in a certain constant ratio to the value
y.u Every real situation in which growth is slower at the begu\m:; ing
than later, e.g. the amount of wood in a forest which increase
faster the bigger the trees are, is an example of this."® This type ¢
growth, which leads to t-th powers, can be contrasted with on
growing according to differential equations of the form d"y/dt" = |
which result in n-th powers of t. This contrast in continuo

growth is analogous to the contrast between geometric and aritk
metic series in stepwise growth.

In arithmetic series (for simplicity, a first-order series is cho?
sen) such as the following;:
i
i

ga+da+2da+3d .,a+(n-1)d, .. .
the same magnitude is always added regardless of the valu/
reached by the function itself. The essence of the geometric seri¢
consists in the fact that the growth depends on the magnitude o
the function itself, that it is always a multiple of that function, saf-
ka. The series is then: ¢

a,a+ka, (a+ka) + k(@ + ka), [(a + ka) + k(a + ka)] '
+k[(a +ka) +k(a +ka)] . ...
=qa(l+k),a[(1+k)+k(@+Kk] af{(1+k) +k{1+k)]+k][1
K+kI+K)]}..... 5
=qa(l+k,r1+k%a1+k3. ... a(l+k™?

SN E———

and therefore geometric. In this way, one can vividly demonstrate
the difference between arithmetic and geometric series; this
demonstration can then be completed by providing practic

examples. The growth according to an ;arithmetic series, for
instance, is represented by the growth of velocity of a falling;
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e growth is based on what is alre
ore interest. -
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- Conclusion o S
Finally, j , ; Translator’s Notes
more Z’}; ;;j}rllould be emphasized that jn the teaching profess; .
an 2g 00 . !
his strength y otht.er, 1t is important for the teacher to devot, }'hxs was, of course, written before the acceptance of plate tectonics
rength and all his enthusiasm to the cause, The best n:ury.
roe . . st curn -
a it .
cher’s initiative does not let him find émother example, perhaps more familiar to today’s students, is the

right approach t
initiativ p O every lesson and to every sentence h .Iﬂency of a bank of elevators to run together, arriving at the same floor
alve, created by t € he utters. - he same time, unless artificially controlled by computerized schedul-

considered the mostim

he teacher’s own enthusiasm, should
requirements sot by the };:’ttant aspect of teaching, Yet the more [ _ v
and responsibility, th e takfe away the teacher’s own freedoi_ome five years after this paper by Dr. Baravalle, Albert Einstein pre-
will be lost, ang + € more this precioys power for instruct'!ted another plausible explanation of the formation of meanders in his
matter + and pedantry wi]] take its place. Repulat; ‘er “The Cause of the Formation of Meanders in the Courses of Rivers,
€r how good, cannot help us in th fpn e.gu ations, § of the soalled Baer’s Law”, presented on January 7, 1926 to the
only the unrestrained stren th of . es.e filfflCUIt times. Thereissian Academy of Science. A translation by Alan Harris appears in the
trust in that. 8th of the individual, We must put opk A. Einstein, Essays in Science, Philosophical Library, NYY, 1934.
feﬂy, and much simplified, an initial random small curvature in the river
d will cause a.centrifugal force on the water toward the outside of the
rve. Due to friction on the bottom, the outward velocity caused by this
ice will be less on the bottom than near the surface, resulting in a rotation
Iinsverse to the direction of the stream, outward near the surface and
ward near the bottom of the river. This in turn will cause sand and gravel
be carried from the outside of the curve to the inside, causing the

rvature to increase.

}Of course, the teacher now would want to substitute the cab of a Diesel
" giné or the cockpit of an airplane.

The author unaccountably omits the gas pedal.

1 Fig. 12 clearly does not picture the initial transient if simple periodic
tion of point B is assumed. The figure should look more like this:

/. Since the discovery of nuclear energy, this statement is no longer true.
[ the sun’s energy is nuclear energy, one could say: “All energy is nu-
lear,” but this presents the student with an abstraction of little immediate
nterest. It would be much better to say: “Except for a tiny fraction pro-
luced by nuclear energy, all energy on earth comes from the sun.” One
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might also discuss geothermal energy and point out that it, too, m
nuclear or solar in origin, s by Hermann v. Baravalle in English translation
8. It should be noted that with the foci separated by a fixed distance a)

will not be reached, only approached; as the axis AB approaches iy, mical Calendar for the Year 1942
length, the ellipse will approach the shape of a circle with infinite dj '

ter. fonomy, An Introduction (1974) (Waldorf School Monographs)
9. The concept of the basic circle may not be familiar. As just defined, | :
the ellipse is defined as the locus of points the sum of whose diszmetric Drawing and the Waldorf School Plan (Waldorf School
from the two foci is a constant equal to the major axis, a circle K (Fi ‘

can be drawn with center at £ and radius I2 + 11 as shown jpnographs)

construction. Similarly, in Fig. 48 circle K has a radius I2-13, correspon :

to the definition of the hyperbola, With axis end point A and focus F; f‘metry at the Junior High School Grades and the

the mtemEtion of the basic circle with the major axis is also ﬁxe{ldorfSchool Plan (1948)

distance AF; from A on the opposite side from Fj. For ellipses, K ‘

curve to the right (Fig, 47); for hyperbolas, it will curve to the left (Figi

for the parabola, K will degenerate to a straight line, ueton sorPhysics in the Sixth Grade of the Waldorf Schools -

lance Between Art & Science (1959) 1
10- A similar transition can be obtained by fixing one focus an enlarged edition (Introduction to Physics in the Waldorf School)
directrix and varying the eccentricity. (Waldorf School Monographs)

11. Dendelin’s Theorem states that, for a conic section, a sphere insc
in the cone and tangent to the intersecting plane will be tangent to
plane at one focus of the conic section,

uction to the Astronomical Phenomena,
Astronomical Almanac 1943

12, If ¢ is in units of time, the “pure growth equation” dy/dt = )
dimensionally inconsistent; it only Pr)makeis;r:ense i(:'qt is non-dimensicppective Drawing (1968) (Waldorf School Monographs)
Therefore, in actual applications of physics, we always find the equa
in the form dy/dt = 4y , where a has the dimensions of time™". Of co
any equation of the form dy/dt = ay can be converted to the form dy/dt
by letting ¢’ = at,

13. This statement is certainly an exaggeration. There are many
rences in nature which grow slower at the beginning than later and do
vary exponentially; e.g. the distance covered by a body falling under}
force of gravity whith varies with the square of the time. In reality, wj
much growth in nature starts exponentially, none tontinues in this fash . 1
since nothing can gtow without limits; there is always a point of sati Astmnomlca}‘Phenomena of the Year 194
tion.

International Waldorf School Movement (1963)
: dorf School Monographs)
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